

1.2312

Plastic Mould Steel

TECHNICAL SHEET

1 Comparision Standards

W.Nr	DIN	JIS equivalent	AISI/SAE	AFNOR	BS	UNI
1.2312	X40CrMnMoS8-6	-	P20	40CMD8S	-	-

2 Chemical Composition

С	Si	Mn	P (max)	S (max)	Cr	Мо	Supply Condition	Supply Hardness (HB)
0.35-0.45	0.30.0.50	1.40-1.60	0.03	0.05-0.10	1.80-2.00	0.15-0.25	Q & T	280 - 320

3 Main Characteristics and Applications

1.2312 steel is a premium-grade plastic mould steel alloy known for its exceptional machinability. This is achieved by incorporating approximately 0.08% sulfur into the base 1.2311 steel, enhancing its free-cutting properties.

Applications:

- Injection Moulding
- Blow Moulding
- Thermoforming
- Rotational Moulding

4 Production Route

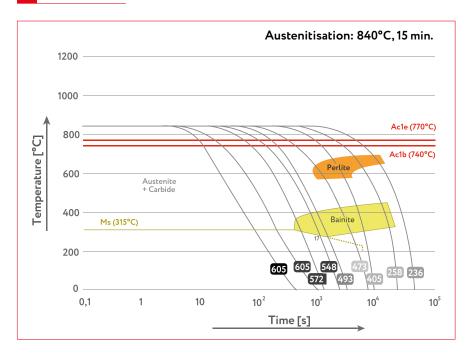
EAF - LF - VD - Forging - Heat treatment QT

5 Physical Properties (Reference Values)

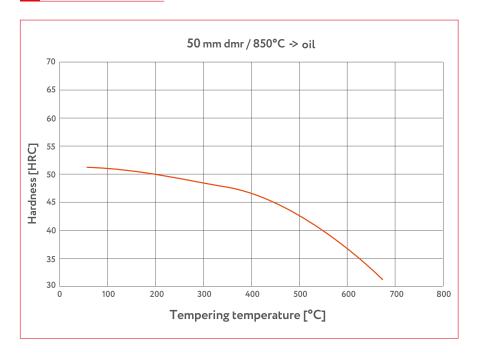
	20°C	100°C	250°C	500°C
Thermal expansion coefficient (10-6/K)	12.1	12.4	12.9	13.9
Thermal Conductivity (W/mk)	38.9	39	40.1	35.7
Young modulus (Kn/mm2)	212	205	200	175

6 Heat Treatment

TREATMENT	TEMPERATURE	HOLDING TIME (HT)	COOLING	COMMENTS
Annealing	Heat to 700 - 720 °C	Min. H.T. for 2 minute /mm	Air or Furnace	To achieve a hardness below 250 HB (24 HRC) and enhance machinability
Stress relieving	Heat to 560 - 600 °C (max 30 °C below tempering temperature)	Min. H.T. for 2 minute /mm	Air or Furnace	It is recommended to eliminate the residual stresses induced by mechanical working after machining
Hardening	Heat to 860 - 880 °C	Min. H.T. for 1 minute /mm	Polymer	-
Tempering	Heat to 550 - 620 °C	Min. H.T. for 3 minute /mm	Air or Furnace	To be performed after hardening, conduct a second tempering at a temperature no more than 30 °C below the initial tempering temperature



1.2312


Plastic Mould Steel

TECHNICAL SHEET

7 C.C.T. Curve

8 Tempering Curve

